FILE Copy

.

ESD-TR-77-149 *

ESD ACCESSION LIST
DRI Call No._ 317924

\
Copy 'XO'TI‘SV\'PT‘E—ENU%'EMBLE SYSTEM

INITIALIZATION MECHANISM

Massachusetts Institute of Technology
Laboratery for Computer Science (formerly Project MAC)

Cambridge, MA 02139

May 1977

Approved for Public Release;
Distribution Unlimited.

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION

HANSCOM AIR FORCE BASE, MA 0QI731
DEFENSE ADVANCED RESEARCH PROJECTS AGENCY

1400 WILSON BOULEVARD
ARLINGTON, VA 22209




.
.

The views and conclusions contained in this document are those of the authors and should
not be interpreted as necessarily representing the official policies, either expressed or
implied, of the Defense Advanced Research Projects Agency or the U.S, Government.

LEGAL NOTICE

When U.S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or seil any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

This technical report has been reviewed and is approved for publication.

Il s vy

WILLIAM R. PRICE, Captain, USAF ROGEB/R. SCHELL, Lt Colonel, USAF
Techniques Engineering Division ADP(Zystem Security Program Manager

FOR THE COMMANDER

A

FRANK J. , Colonel, USAF
Director, Computer Systems Engineering
Deputy for Command & Management Systems -




SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

1.

REPORT NUMBER 2. GOVT ACCESSION NO.

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

ESD-TR-77-149

3. RECIPIENT'S CATALOG NUMBER

TITLE (and Subtitle)

A SIMPLE AND FLEXIBLE SYSTEM
INITIALIZATION MECHANISM

S. TYPE OF REPORT & PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

MIT/LCS/TR-180

AUTHOR(s)

Allen William Luniewski

8. CONTRACT OR GRANT NUMBER(s)

F19628-74-C-0193
ARPA Order No, 2641

PERFORMING ORGANIZATION NAME AND ADDRESS

Massachusetts Institute of Technology

Laboratory for Computer Science (formerly Project MAC)
Caombridge, MA 02139

m
r
m
[=% <

ENT, PROJECT, TASK
NIT NUMBERS

. CONTROLLING OFFICE NAME AND ADDRESS

-

2. REPORT DATE

Deputy for Command and Management Systems May 1977
Electronic Systems Division T3. NUMBER OF PAGES
Hanscom AFB, MA OI73] 105

. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Oftice)

Defense Advanced Research Projects Agency
[400 Wilson Boulevard

1S. SECURITY CLASS. (of this report)

UNCLASSIFIED

Arlington, VA 22209

1Sa. DECL ASSIFICATION/ DOWNGRADING
SGHEOULE

. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release; Distribution Unlimited.

. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18.

SUPPLEMENTARY NOTES

19,

KEY WORDS (Continue on reverse side if necessary and identify by block number)

System Initialization Core Image
Layered System
Minimal Configuration

Dynamic Reconfiguration

20.

ABSTRACT (Continue on reverse side if necessary and identify by block number)

This thesis presents an approach to system initialization which
is simple and easy to understand and, at the same time, is
versatile in the face of configuration changes. This thesis
considers initialization of a layered system and also considers
the problems one might encounter in implementing the many dynamic
reconfigurations required by this approach to system
initialization.

DD

M
. 'j:’: 23 1473  EDITION OF 1 NOV 65 IS OBSOLETE

v SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)




SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)




MIT/LCS/TR-180

A SIMPLE AND FLEXIBLE SYSTEM INITIALIZATION MECHANISH

Allen William Luniewski

May 1977

The research reported here was sponsored in part by Honeywell
Information Systems Inc., and in part by the Air Force Information
Systems Technology Applications Office (ISTAO), and by the Advanced
Research Projects Agency (ARPA) of the Department of Defense under ARPA
order No. 2641 which was monitored by ISTAO under contract No.
F19628-74-C-0193,

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE
(formerly Project MAC)

CAMBRIDGE MASSACHUSETTS 02139




ACKNOWLEDGMENTS

A number of people and organizations have helped in the completion
of this research and I would like to thank them now. I am sure to miss
someone so I apologize in advance for these omissions.

First I would like to thank Dr. Clark, my thesis supervisor. His
help has been very valuable in clarifying many of the ideas present in
this thesis. I am especially grateful for the many hours he has devoted
to reading earlier drafts of this document. Without his many helpful
comments this thesis would never have been brought to completion.

Special thanks to Professor Liba Svobodova who took time out from a
busy schedule to read an earlier draft of this thesis. Her comments
were invaluable in clarifying the exposition of many of the ideas
presented in this thesis.

I would also like to thank Professor Saltzer who suggested this
line of research and whose continued help is greatly appreciated.

I would like to thank all of the members of CSR and especially Art
Benjamin, Steve Kent and Jeff Goldberg. Their comments on various parts
of this thesis have been helpful. Without the many interesting
diversions they provided this research would have never been completed.

Lastly I would like to thank my family. My brother and sister, Tom
and Cheryl, have been a comfort throughout the many years leading up to
this research. To my parents without whose constant love and affection
I would never have started or completed this research.

This research was performed in the Computer Systems Research
Division of the M.I.T. Laboratory for Computer Science. It was
sponsored in part by Honeywell Information Systems Inc., and in part by
the Air Force Information Systems Technology Applications Office
(ISTAO), and by the Advanced Research Projects Agency (ARPA) of the
Department of Defense under ARPA order No. 2641, which was monitored by
ISTAO under contract No. F19628-74-C-0193.




A SIMPLE AND FLEXIBLE SYSTEM INITIALIZATION MECHANISM *

by

Allen William Luniewski

ABSTRACT

This thesis presents an approach to system initialization which is
simple and easy to understand and, at the same time, is versatile in the
face of configuration changes. This thesis considers initialization of
a layered system. The initialization mechanism is built upon three key
concepts: existence of a minimal configuration, a core image of the
system and dynamic reconfiguration. By assuming that the system will be
running on the minimal configuration we generate a core image of the
base layer of the system which, when loaded into core on any viable
configuration, produces an operable base layer. As higher layers of the
system are initialized dynamic reconfigurations of the lower layers are
invoked to cause the system to run on the configuration actually
present. The thesis also considers the problems one might encounter in
implementing the many dynamic reconfigurations required by this approach
to system initialization.

THESIS SUPERVISOR: David D. Clark
TITLE: Research Associate of Electrical Engineering and Computer Science

* This report is a minor revision of a thesis of the same title
submitted to the Department of Electrical Engineering and Computer
Science on January 21, 1977 in partial fulfillment of the requirements
for the degrees of Master of Science and Electrical Engineer.




TABLE OF CONTENTS

ACKNOWLEDGI{ENTS ® 0 6 9 0. 0. 9 % 00 2 00 OO S EO SO 000N N0 00NNl Se e e e

ABSTRACT ® 9 8 0 0O 00 0 80 0PSO P OO LN OO 0O OO NN 0NN

TABLE OF CONTENTS 0 0 0 0 0 0 00 000 00 00O L OO O OO LN OO N TN N N e

LIST OF FIGURES ® 0 0 0 0 0 0 0 00 00 OO OO OO OO OO OO B 0000 OO 0NN O OO N OO EE O

1' Introduction @ 0 0 0 0 0 0 6 00 00 0 0 00 00O O OO OO OO ON 00NN eN eSS

1 .l Initialization in General ® 6 0. 0 0 000 00 0 S0 H NS00S0 NN e

1.2 The Need for Versatility ...ceeeeccecscscccsessccssacsosana

1 L 3 Related work ® 0. 0 0 0 00 0 00 00O O OO OO OO0 OO OO OO NSO e e e e e

1.4 Thesis Outline: Preview of Approach ....ceeeeecesccsosceanane

2. A Model of a Computer SYSteM ..cceecsvsssessscscsssesascsssssssssssa

2 Hardware Base ® 0 O 0 0 P OO OO O OO E LT OO OL NN OO OO NeN N e

2 . Sof tware Base ® 0 0 0. 0 00 00 6 000 56 0 05 000000 0050000 S OO NSE SN NN
2
2

1

2
3 Multiecs Tatt1aldBaTLON . ar is5 e 0% om0 05 el o s b3 of 6 o gis big 65 &6
4

Wrapup © © 00 0000000000000 5000000000000 00006006000806000806000000e0s0

3. Overview of the Initialization Scheme ..cccecececccsccscssscnccss

3.1 Initialization in a Layered SyStem ..seescecscesccssccnsans

3.2 Base Layer Initialization ..ceceesscccoscscessnsascsscsncans

303 WEADUP (s o005 o050 33555 iM 15555 s[5 035 ¢ s olssens et s elsonaee s e

4, Core Image Generation ..ccesecescccscsccascsncsccccsosscaccnsscnese
4.1 The Process of System Generation ...eeececscsccscsccccscsocs

4.2 Where System Generation OCCUYS .eseessevccssosassssssccsanns

4.3 The Minimal ConfigUraEion .cccsssscasioncsaissscanasssanssasme
4531 Madn !MefOTY S1Z8 wsnessib waewcbon anssssm 0560 06 o o oui e s
4.3.2 Main Memory AddresSses ..eceeescessssssccscsscscsscens
4,3.2.1 A Relocating Loader ..cceececcescsacccccccens
4.,3.2.2 Realization of Assumed Addresses ...cceovcees
4.3.3 System Table SizZeS .seieececscsccscccsscsnscsscccncsnne

8§04 'Combon ACELONB] oo sl s sie sl e sizis/ols s s e slolele olls 8 s/€ s/® s o slols olele & olsias s sls

4.5 wrapup © 9 000 0000000000000 080000060006 0060060000060000600s60060606060000

5. Base Layer Loading and Init1alization ceeecececcecsscenocscccoces

10
14
15

19

19
21
23
27

29

29
32
36

37

37
39
40
41
43
44
46
49
50
53

55




5.1 The Core Image LOAder ....eveeccecveccosssosssssscssassssass DI
5.2 Core Image SizZe seeeeeecccssscsssssns 000 0TS RO 0 TIC 30 00I00JC 58
5
S5

.3 Base Layer Initddlization w.:..:c5:0% 605566 bsdoossnsaios 60
o &) WEADUD! o'sis s vle B srel Mol e B8 50 5150 ole ol ole /s slo o olo) olfe olelslsielo sl b sl s ol st e el shalel D2

6. File System Initialization ...cceeeecsscccccessososcncssosccssnnnas 63

6.1 Dynamic Reconfiguration ..e.ecceecccsccsssssscssss 510 A0 IO GG 63
6.2 ReconfAGUEALTON 5080635 c 5easeeoosoitonsssosenssessessmesssse 04
6.3 File System Initialization ..... 5000000 HEEE sleLs)s/ eleb e le olis oo ls 1 OIO
6.4 The Initial Paging Area ...c.ceeeeese 3 00 O FI0Y3 070 AI0D O 59 B0 6 69
6.5 The Root ....... 0 e Qi Q SOI0KT 0.1 (10 00 01013 € 5000000 50 (00N 0P s 72
6.6

wrapup ® 0 0 0 0 0000 000 00 00 00 000 OO OSSO0 0N OO0 OO L SN 0NN e e 73
7. Dynamic Reconfiguration .....cceeeeeececccessosssssnsscsscccscnns 75

7.1 Hardware Reconfigurations ..cceeececcsceccccsossesscscnscncns 76
Tel.l TOM AddIELON o cioissaioisoissessisssasesonssomssesesiessissss 76
7.1.2 1/0 Device Addition .ieeeceeececccecsceonscassccsees 8l

7.2 Software Reconfiguration ...cceceeveccccssccnncs 0/5 Ao 0BT 00 0 81
7.2.1 Parameters ..ceecececess n B0 0GRS 0.0 0 H o3 o 0 0868 010 0k 00 00 O . 82
7:2.2 Table EXDPANSILON i e o0 0050000 00000 aisoseehonoresooseos 83

7.2.2.1 Supervisor Segment Growth .....ccecceeceecces 84
7.2.2,.2 Multiple Tables in a Segment ...cceeeescsceces 87
7.3 ' MUYELCS ¢ ooeeieTsiomesaSenmsvsiss 80510020 06 0 6.8 0 05 K00 0 00 N0 O A0 ¢ 92
7 o8 'WEBPOP wis o a5 0 6 a8 6o a 010 0e nls a8 aesséassdedneaesssssesssiessissee .s 95

8. ConclusSion weiiossessreessss OB G000 0B EBLOE000BBoE do oD Bosdn &0 060D 0 97
1o It RESUIES | o s o o s ere ons o5 8o olarelesie sessass sasessssm sesoleorsedssioo .. 98
8.2 Tradeoffs ® 0 0 0 0.0 0 0 00 0 0 0 00 00O OO OO NS CO SN O e OO RSO SN e OS 101

8:3' Further ReSAATCH. 5 cevosoevatsosscsasssesssossbesionélsnssoeioes 102

BIBLIOGRAPHY < .:cncsiiassesicosioetionnsshiassses cesense T e 104




LIST OF FIGURES

Figure 7.1 0 s e 0000000000000 00000000000 0 0000000000000 000000000c00000 85
Figure 7.2 s e e sos 00000000 © 0 000000000 000000600000060000000006006006006000e00o0 87
Figure 7-3 --------- eo 0000000000 € 0000000000000 0000000000000 000000000 88




Chapter One

Introduction

Almost from the first appearance of the stored program digital
computer there have been operating systems for these machines. The
problem has always existed as to how to get an operating system, which
has been designed for a class of machines, up and running upon a
particular member of that class. This is a repetitive problem that
occurs each and every time that it is desired to bring the system up
after it has been down for a while. This is the problem of system

initialization and is the subject of this thesis.

System initialization has been, for the most part, a neglected area
of systems development. The techniques used by most current operating
systems are either ad-hoc, difficult to understand and show correct or
they lack versatility in the face of changes in the collection of
hardware the system will be running upon. This thesis will attempt to
develop a framework for system initialization that maintains this

versatility but still is relatively easy to understand and show correct.




1.1 Initialization in General

To start we provide a general characterization of system

initialization. To do so, we first make a few definitions.

We define the hardware configuration to be the collection of

hardware modules present in an installation as well as their
interconnections (the system "wiring diagram'). For instance processors

and memories are part of the hardware configuration.

The software configuration consists of the values of various system

parameters and the size of the system tables. For instance the maximum
number of processes allowed on the system at one time is part of the

software configuration.

We define the configuration of a system to be the union of the

hardware and software configurations.,

With these definitions in mind we can make the following general
observation about system initialization. Most operating systems are
capable of running on a number of different configurations. The goal of
initialization is to produce a version of the operating system tailored
to a particular configuration and running upon that configuration. Most

actions of initialization are present for exactly this reason. This




view is supported by examination of many current operating systems
including Honeywell’s Multics, IBM"s 0S-360 and Control Data’s SCOPE

operating systems [CDC, Flores, HISIa].

The actual process of getting an operating system running on a
collection of hardware has the following form. One (or potentially
more) I/0 device contains a storage medium, called the bootload medium,
(1) that contains the programs and data necessary to bring up the
operating system. In some system dependent way one Oor more processors
begin running and use the bootload medium to get the operating system

running on the particular éonfiguration present.

We can identify three important times with system initialization.

System generation time is the time when the bootload medium is generated

(created). This generally occurs during a previous period of the

system”s operation. Initialization time is the period of time during

which the operating system is being loaded onto the machine and

initialized but before it is running normally. The time after the

system is initialized, when it is running normally, is called run time.

This thesis will attempt to produce a simple and easy to understand
overall system initialization mechanism. It is a fundamental premise of
this thesis that an activity performed at system generation time or at

run time is inherently simpler than the same action performed at

(1) For instance the I/0 device might be a disk drive and the bootload
medium a disk pack.




initialization time. We shall use this premise to produce our

initialization mechanism.

1.2 The Need for Versatility

In choosing a way of achieving system initialization we want a
method that is versatile; that is, it has the property that there is
one version of the bootload medium that can be used on any configuration
to bring up the operating system. We will call an initialization
mechanism that has this property configuration independent. For
instance, if the system is initialized using magnetic tape as the
bootload medium, we would like to be able to have one magnetic tape that
can be used on any configuration to initialize the system. This

versatility is very desirable, as the following example will show.

Consider a computer utility with a hardware configuration
consisting of one processor and two boxes of memory and that we have a
tape (1) specifically intended to bring up the operating system on this
configuration. Now suppose that, as the system is running, one of the
memories fails causing the system to shutdown (or, more likely,

immediately "crash'").

(1) For convenience we assume that the system is initialized using a
magnetic tape. In principal any suitable type of I/0 medium (such as
disks) can be used as the bootload medium.

10




We will want to bring the system up as soon as possible so as to
provide maximum service to the users of the computer utility., If it
will take a long time, say days, to repair the memory, we are now faced
with the problem of bringing the system up on this new, smaller,
configuration of one processor and one memory. Our original tape cannot
be directly used since the configuration has changed and is no longer
the same as the one that the original tape was generated for. There

seem to be four ways of getting our system up and running at this point.

First we might have previously generated a tape for this new
configuration. If so we are in good shape and can just use that tape.
This, however, is not in general likely since we experience
combinatorial explosion in the number of tapes as the number of
variables in the configuration increases. For instance, with two
variables, each taking on two values, four different tapes are required
to handle all possible configurations but five variables each taking on
five values requires 3125 (=5*5%5%5*5) tapes. Thus, for all but the

smallest systems, this technique will fail.

A second approach would be to go to the vendor of the system and
ask him to generate, on his system, a tape for this new configuration.
This is undesirable for two reasons. First it makes the availability of
our computer utility dependent, in this case, on the availability of
someone else’s system (the vendor”s). Second there might be a delay of

hours before the vendor can supply the new tape. 1In either case we

11




would experience a substantial delay in getting the system back up and

running, violating a prime goal, availability, of a computer utility.

A third possibility is to use the original tape and then '"patch"
the system to reflect the new configuration. This is a poor way to
proceed since the chance of an error while patching is very, very high.
At best, this will result in a system that will not run at all; at
worst the system will run but will operate incorrectly in an unnoticed
way. Such undetected, incorrect operation is intolerable so we must

also reject this approach.

The fourth possibility is a '"starter" system. This is a separate
operating system (possibly similar to the operating system that we wish
to initialize) with the property that it can come up on any viable (1)
hardware configuration. This starter system is then used to generate a
tape for this new configuration. This approach has two basic drawbacks.
First the generation process may be a very long one. The resultant time
delay may be intolerable. The second is that we may now have two
dperating systems to maintain, understand and show correct. We would

like to avoid this added burden if at all possible.

(1) A viable configuration is a configuration on which the system can

run. For instance a configuration consisting of no processors is not
viable.

12




We have seen four ways of getting our failed system up and running
again. None of these schemes is completely satisfactory so we come to
the conclusion that we must have an initialization scheme that can come
up on any viable configuration if we are to achieve the goal of
availability of our system. This thesis proposes an initialization

nechanism that has this property of configuration independence.

The question naturally arises as to how present day operating
systems address the issue of versatility in their initialization scheme.
The answer, unfortunately, is that many do not. In the face of changes
in the configuration many systems require a new bootload medium to be
created. As this tends to be a long process this is undesirable for a
computer utility. Some systems have other drawbacks beyond this. For
instance IBM’s 0S-360 [Flores, IBMa] operating systems take a starter
system approach where the starter system 1s just a version of 0OS made
for a particular configuration. Unfortunately there exist
configurations upon which one can run 0S but which cannot run the
starter system! On the other hand, Honeywell’s Multics system has the
property that one bootload medium can be used to initialize the system
on any viable configuration (i.e. it meets our requirement of
versatility). However, the method used, as we shall see in chapter two,
is rather complicated and difficult to understand. In order to achieve
this versatility a great deal of work is done at initialization time.
This, however, is a time that, as we shall argue in the next chapter, is

an undesirable one at which to perform complex operations. The goal of

13




this thesis is to present a method for initialization which has the

versatility of the Multics approach, but avoids its complexity.

1.3 Related Work

There is very little published material on system initialization,
In [GM] a discussion of the initialization of the General Motors
Timesharing System is presented. Initialization of IBM’s 0S-360
operating systems is discussed very briefly in [IBMa] and [Flores].
These provide a top level view of the goals and methods of achieving
system initialization for these systems. The original design and
motivation of Multics initialization is contained in [MSPM] in both a
top level form and also in very great detail on a module by module
basis. The original design is very close to the present implementation
which is described in great detail in [HONa]. Unfortunately none of
these documents and other documents this author has been able to find
address system initialization in a somewhat higher, system independent,

manner. Such a higher level view is one of the goals of this thesis.

This thesis builds upon the work done by Schell [Schell] in the
area of dynamic reconfiguration. He discussed dynamic reconfiguration
pof processors and memory. In this thesis we will add to this work by
including some aspects of the dynamic reconfiguration of I/0 devices and

various software reconfigurations.

14




The idea of layering of systems is an important one in this thesis.
The concept of layering has appeared in numerous papers including
(Dijkstral and [SRI]. As we shall see in the next chapter this thesis
only uses a very weak form of layering, which only requires that the
bottom layer be always core resident; other forms of structuring a
system, such as those in [SRI}, [Reed] and [Huber], are equally amenable

to the techniques presented in this thesis.

1.4 Thesis Outline: Preview of Approach

The ideas presented in this thesis have been inspired by the
Multics time sharing system. As such they are directly applicable to
that system. This does not mean, however, that the ideas cannot be
applied elsewhere. 1In fact the method presented in this thesis should
be applicable to any general purpose operating system that is based on a
central processor - central memory hardware and that exhibits the
minimal structure presented in chapter two. 1Its applicability to other

architectures is, however, an open question.

In chapter two we present a model of a computer system. It is a
top level view of the important aspects, from the point of view of this
thesis, of the Multics system (hardware and software). We also look at
the way in which Multics is initialized - an incremental mechanism.
Using this knowledge we discuss the ways in which the scheme leads to

difficulties in understanding Multics initialization.

15




Chapter three is a top level look at the initialization scheme
proposed in this thesis. Initialization of a layered system is
considered. We show that the hardest part of initializing a layered
bystem is initializing the base layer. The proposed scheme to
initialize a system attempts to take the extremely simple to understand
core image approach to system initialization (in which an image of the
system is just loaded into core to cause the system to run) and modify
it so as to have a way of initializing the system that maintains the

versatility which has been seen to be desirable.

The technique described achieves both simplicity and configuration
independence by the combination of two concepts: a minimal
configuration and dynamic reconfiguration. In reading chapters three
through six the reader should keep in mind that the uniqueness of the
approach presented in this thesis is in the combination of these two
ideas to keep the simplicity of a core image approach and, at the same

time, maintain configuration independence in our initialization scheme.

Chapter four describes the system generation procedure. It is here
that the idea of a minimal configuration is explored in greater depth.
By assuming the existence of a minimal configuration we see that many
current initialization activities become actions performable at system
generation time, with the result that we can create a core image of the

base layer of the system.

16




Chapter five discusses the activities necessary to take the core
image of the base layer of the system, load it into core and cause the
base layer of the system to run. We also discuss the properties that
the core image loader must have and problems associated with the size of

the core image.

In chapter six we discuss how to initialize the second layer in the
two layer system modeled in chapter two. It is here that the idea of
dynamic reconfiguration is used extensively. Dynamic reconfigurations
of the base layer are invoked as part of initializing the second layer
to cause the base layer to be running using the full configuration
actually present. We also see here that we only need one class of
reconfigurations - additive. The subject of an initial paging area for
the file system layer is discussed. The root of the hierarchial file

system and storage system devices are discussed in detail.

The implementation of dynamic reconfigurations is discussed in
chapter seven. Mention is made of the addition of processors and
memory. The addition of I/0 related hardware is discussed in detail.
The dynamic changing of software parameters which control system
operation is also touched upon. Lastly the problems associated with
growing system tables, the major type of software reconfiguration, are
discussed in detail. The subproblem of growing system segments is also

discussed.

17




Finally chapter eight reviews the methods presented in this thesis.
Some comments are made on the applicability of this method and

possibilities for future research.

18



Chapter Two

A Model of a Computer System

In this chapter we will present an overview of the Multics
operating system and some relevant aspects of the hardware it runs on.
Our goal is to provide the reader with sufficient knowledge in these
areas to enable him to appreciate the issues involved in system
initialization on Multics. Using this knowledge, we then discuss how
the hardware and software of Multics affects its initialization. The
description of Multics serves as a general model of a two layer system
and it is in the context of that model that the rest of the thesis will

be presented.

2.1 Hardware Base

Although there are many aspects to the hardware that Multics runs
on, for the purposes of this thesis we can abstract away from the actual
hardware to a great extent. There are, in fact, only two aspects of
interest: the system is centralized and the concept of a system wiring

diagram is important.

19




This thesis only deals with centralized systems. These are systems
consisting of one or more processors sharing memory and peripherals.
Examples of such systems include Honeywell’s Multics system, IBM’s 360
and 370 systems, Control Data’s 6600 and 7600 systems and DEC’s PDP-10

systems.,

The other important aspect is the concept of the system intermodule
wiring diagram which reflects the physical interconnections between the
various pieces of hardware, e.g. a processor or a memory module, that
comprise the system. The system software needs to know this in order to
direct commands from one module to another. For instance on Multics
when a processor wants to initiate I/0 it must know where, in the system
wiring diagram, the I/0 device in question is. Also, in the case of
Multics, all intermodule communication is via system controllers, which
also contain the memory, by sending messages along parts of the system

wiring diagram.

20




2.2 Software Base

In this section we present a top level overview of the Multics
supervisor, with the aim of presenting the structure of the system

rather than implementation details. See [MAC73] for more details.

llultics is a general purpose timesharing system which implements a
paged, segmented virtual memory, provides a hierarchial file system and
provides for user controlled sharing of information. We will regard the
Multics supervisor as a two layer system. (1) For the purposes of this

thesis we shall regard each layer as being unlayered internally.

The top layer implements the file system. It is responsible for
mapping user names of objects into segment identifiers. The rooted,
hierarchial file system is implemented by this layer. This layer is

also responsible for maintaining the attributes of segments such as the

unique identifier, access control information and the creator.

The bottom layer, which we will call the base layer, provides the
virtual machine that the file system layer runs on. It provides four

basic functions. First, it includes the traffic control module which

(1) By layer we are referring to layering such as in Dijkstra’s T.H.E.
system [Dijkstral] or as in [SRI}. Layers 1 to i implement the virtual
machine used by layer i+l.

21




implements processes, provides the interprocess communication mechanism
and multiplexes physical processors among processes, Second, the paging
mechanism and management of main memory are provided by this layer.
Third, low-level input-output is the responsibility of this layer. It
initiates all 1/0 and is responsible for determining the status of 1/0
operations, Fourth, this layer is responsible for fielding interrupts
and faults (1) and directing them to their correct handlers. In this
capacity it is also responsible for setting interrupt masks so as to

prevent the occurrence of some, or all, interrupts.

This particular layering of the system has been chosen based upon
three considerations. First the major criterion is to minimize the size
of the bottom layer of the system. As we shall see in chapter four it
is essential to make the bottom layer take up as little memory as
possible. The second criterion is that the file system not be
implemented in the base layer. The correct operation of the file system
layer depends on the integrity of secondary storage. We do not wish the
correct operation of the base layer to depend on this kind of external
condition, as this would make it impossible to find a minimal
configuration. For this reason we do not want the file system
implementation in the base layer. The last criterion is simply one of
convenience. The layering we have chosen models the Multics system very

closely.

(1) A fault is a condition, such as overflow, that is generated
internally by the processor receiving the fault. This is in contrast to
an interrupt that is generated externally to the receiving processor.

22




2.3 Multics Initialization

In the previous sections we have provided a top level view of the
hardware that Multics runs on as well as a simple view of the Multics
supervisor. Using this knowledge, we will briefly touch on the issue:
What makes current Multics initialization hard to understand? In
answering this question we hope to provide further motivation for the

remainder of this thesis.

In order to see what makes Multics initialization hard to
understand, we must first get an idea of how it actually works. The
following is a brief discussion; more detailed information is available

in [HISIa].

Multics system initialization has been organized in a way so as to
have one bootload tape that can be used on any configuration to bring up
the system. Multics initialization has been ofganized so that almost
all of the actions needed to produce a running system, as opposed to
only the configuration dependent actions, take place at the time that it
is desired to initialize the system. At the time that the bootload tape
is generated all that is done is to take compiled programs and data and

place them on the bootload tape.

23




The way in which the initialization of Multics occurs is best
described by calling it an incremental mechanism. By this we mean that
the total functionality provided by the supervisor and the environment
(1) in which the supervisor runs are built up in an incremental manner.
This means that while running in one environment, initialization makes
another item of functionality work. It then proceeds to run in this
new, augmented environment. In this way initialization builds its way
from an initial, primitive, absolute addressing environment to the final
environment consisting of a paged, segmented virtual memory with

multiple processes.

Most of the initialization activities that Multics does are
activities performed to produce a version of Multics adapted to a
particular configuration. Unfortunately not all of them can be
characterized in this way and we list some of them now for completeness.
Some activities are the same for all initializations of the system no
matter what the configuration is. In Multics the best example of this
is an activity known as prelinking in which the external references of
supervisor programs are statically resolved for the life of the system.
It takes place at the same point of initialization, in exactly the same
way, each and every time the system is initialized. Other such

activities are the setting of system wide constants (such as page size

(1) We loosely define the environment of a module to be the collection
of functions available to that module. At any given instant the
environment of a module describes the total functionality currently
available to that module.

24




and the size of various table entries). Other than these two items, all
initialization operations can be viewed as activities geared to

producing a version of the system adapted to a particular configuration.

This approach achieves its goal of one bootload medium for all
configurations by delaying, as long as possible, configuration dependent
decisions. All such decisions are made while the system is being
initialized, when the full configuration is known. Initialization is
taking the configuration information available to it at the time the
system is being initialized and producing a version of the system
adapted to this particular configuration and running on it. One can
model what is happening by saying that the initialization algorithms and
the bootload medium embody a model of what the system looks like on a
general configuration, and the execution of initialization, on a
particular configuration, uses this model to produce a version of
Multics for the particular configuration present. However the method
used to achieve this, the incremental mechanism, has problems as we will

now see,

The incremental initialization mechanism serves to define a nested
set of environments. It is important to note that the nested set of
environments does not correspond to the layering of the system.
Instead, at some point the current environment will correspond to that
provided by a layer. The internal, amorphous environment of that layer

will have been obtained by going through many nested environments. This

25




nested set of environments tends to make initialization hard to

understand in two ways.

First, it makes the understanding of the initialization routines
themselves hard to understand. In order to understand whether or not an
initialization program works correctly, it is necessary to know the
environment that the program runs in. Thus to understand if an
initialization program is correct one must first determine where in
initialization it is called and the result (in terms of an environment)
of all initialization programs that have run prior to it and then,

finally, decide upon its correctness.

Second, normal supervisor routines are harder to understand. This
is especially true for the base layer since, as we have noted, the base
layer is essentially an unlayered collection of modules. As the base
layer is being initialized, initialization uses features of this layer.
This causes these supervisor routines to run in environments other than
the one environment (the whole base layer environment) they normally run
in. Thus to demonstrate the correctness of initialization one must show
that these supervisor routines run correctly in not just one environment

but in, potentially, many.

As an example of this last problem consider page control, the
collection of modules which manage the multilevel memory system. When
page control initiates a read of a page into core on behalf of some

process, page control wants the current process to stop running and wait

26




for the I/0 to complete. In doing so, it abandons the processor to
another process. However at the time page control begins running there
are no processes because traffic control, the manager of processes, has
not yet been initialized. The problem is to convince oneself that page
control works in the absence of processes (or alternatively that traffic
control does the right thing before it has been initialized). As it
turns out, of course, it does work and it does so due to special casing
inside of traffic control and the zeroing of core prior to the beginning

of initialization.

2.4 Wrapup

We have seen a model of the Multics software as well as a model of
its hardware base. The important hardware features are that it is a
centralized, general purpose computer system and that knowledge of the
system wiring diagram is necessary for the correct operation of the
system. The Multics supervisor has been modelled as a two layer
structure, each layer unstructured. The top layer implements the
hierarchial file system while the bottom layer is responsible for I/0,
interrupt handling, paging and the implementation of processes. The
remainder of this thesis will use this model. Current Multics
initialization has been seen to be an incremental mechanism and we have
argued that it is this incremental character of initialization that

makes it hard to understand. In the next chapter we propose an

27




initialization scheme that is versatile, as is the Multics scheme, but

which avoids the problems of the Multics incremental mechanism.




Chapter Three

Overview of the Initialization Scheme

In this chapter we will present an overview of our proposed
initialization method. It works by taking the activities of the
incremental initialization scheme presented in chapter two and ordering
them so that they occur at very well defined times in well defined

environments so as to avoid the discussed problems.

3.1 Initialization in a Layered System

The initialization of a layered system can be made simple by taking
advantage of the layering present. Initialization will proceed upward
in the system, initializing layer by layer, starting at the base layer,
and continuing until the whole system is initialized. In this way the

initialization task is broken into a number of disjoint parts.

We will discuss this initialization plan by considering the general
case of a system consisting of many layers. We first initialize the
base layer in whatever way seems appropriate and get it running. Then
we initialize the second layer, while running on the virtual machine
provided by the base layer, and get it running. Now, while running on

the virtual machine provided by the second layer, we proceed to

29




initialize the third layer. By proceeding in this way we can initialize
the system layer by layer until the whole system has been initialized

and is running.

After having initialized layers 1 to i, the system will be running
on the virtual machine provided by layer i. We claim that this virtual
machine provides sufficient functionality to initialize layer i+l. If
this were not the case, the idea of walking up the layers, initializing
as you go, would fail. This should not happen in a layered system where
the virtual machine provided by layer i provides all of the
functionality that layer i+l needs to run. To see this, suppose that
the virtual machine provided by layer i did not provide enough
functionality to allow layer i+l to be initialized. Layer i must then
provide a "backdoor", for use only during initialization, which has the
required extra functionality. Unfortunately there is no way for layer i
to know for sure when initialization is over since such information
would come from higher layers which are not trusted. Thus this backdoor
is a defacto part of the virtual machine provided by layer i. For this
reason the functionality provided by layer i to layer i+l should be
sufficient for the initialization of layer i+l. (1) We will assume that

this 13 the case.

(1) An alternative would be to impose additional constraints on the
system to the effect that only initialization programs may use, directly
or indirectly, such backdoors. Another such constraint is, that when
completed, the initialization program inform all layers that
initialization is over, so that they may all shut the backdoors.

30




The writing of the initialization programs for layer i+l is no
harder than writing the programs that comprise layer i+l since, in both
cases, the programs will be running in the same environment - the
virtual machine provided by layer i. Note how this favorably contrasts
with many current initialization methods where the initialization
programs run in a different environment than the regular system

programs.

Thus, in a layered system, the hard part of initialization really
comes down to the initialization of the base layer since it runs in the
most primitive environment - that of the bare hardware. Higher layers
run in progressively more sophisticated environments and thus are
progressively easier to initialize. Even the second layer, in the
svstem model presented in chapter two, sees a very sophisticated
interface, one which includes processes and a paged virtual memory. The
remainder of this chapter will primarily be devoted to outlining a

scheme for the initialization of the base layer of a layered system.

31




3.2 Base Layer Initialization

We wish to produce a base layer initialization scheme that is
simpler than the incremental mechanism presented in chapter two. The
easiest way to simplify this, and any, mechanism is to make as much of

it as possible go away. We shall take this approach.

In order to make as much possible of base layer initialization go
away, we shall use a core image approach. A pure core image approach
has the following form. At system generation time we create a copy of
the base layer as it should appear in core when working. At the time
the system is to be initialized, this copy (which we will call the base
layer core image or core image for short) will be loaded into core.
Since the core image represents a completely initialized base layer, the
act of loading it into core and transferring control to it produces a

running base layer. In the scheme presented below we will modify this
so that only a small amount of initialization need occur after loading

the core image in order to cause it to run.

We will take advantage of three other concepts: common activities,

minimal configuration and dynamic reconfiguration. Common activities

are actions that are the same for each and every initialization; 1i.e.

they are configuration independent. An example might be the setting of

32




a system wide constant such as page size. A minimal configuration is a

configuration, including both hardware and software aspects, which is
guaranteed to be common to all possible, viable configurations. One
component of a minimal configuration would be the existence of, at the

least, one central processor. Dynamic reconfiguration is the changing

of the configuration of the system, while it is running, in a way so as
not to disrupt service to users. For instance in his thesis [Schell]
Schell discussed the dynamic addition and deletion of processors and

memories.

In later chapters we will discuss these three concepts more deeply
but for now we will see how they, in combination with the core image
concept, produce a useful, configuration independent system

initialization scheme.

At system generation time we create a core image of the base layer
by assuming that we will be running on the minimal configuration. Note
how this contrasts with the starter system approach where a core image
is generated for the configuration we would ultimately be running on.
While creating the core image we perform all possible common activities.
Note that we can only create the core image and find many common
activities once we have assumed we will be running on a configuration.
In our case we will have assumed the minimal configuration so that the
initialization scheme is configuration independent. At system

initialization time we take this core image and load it into core. At

33




this point control is given to the base layer which must determine (or
be told) the system wiring diagram corresponding to the minimal
configuration since, as we will see in the next chapter, knowledge of
the system wiring diagram is not assumed as part of the minimal
configuration. The result is an operable base layer achieved in a very
simple manner (a core image approach). Note that this core image must
run since we have generated it assuming a configuration, the minimal
configuration, known to be a subset of the configuration actually
present. The routines that initialize the next layer of the system, the
file system layer, are now given control. The file system initializer,
while initializing the file system layer, can now invoke any needed base
layer dynamic reconfigurations to transform the configuration known to
the base layer into the configuration actually present and desired.
Realize that it is only the existence of these dynamic reconfigurations
that allows us to maintain configuration independence in this
initialization scheme. This is accomplished by the file system

initializer invoking dynamic reconfigurations as needed.

This scheme is simpler than the incremental method since base layer
initialization is reduced to, basically, a simple loading operation.
Much of the hard work is embodied in core image generation which takes
place in a "normal", well understood user environment at system
generation time. The remainder of the work of initialization takes
place in the form of dynamic reconfiguration. These reconfigurations

are the same reconfigurations as used during normal system operation.

34




As such, since they are invoked in a normally running system, their use

in getting the system running on the full configuration is, in some

sense, not even part
additional effort to

believed correct.

This scheme has
reason - the lack of
systems. Ultimately

item which makes the

of initialization and, in any event, requires no

show correct once the system’s regular operation is

not been used before for one very fundamental
a dynamic reconfiguration capability in most
the success of this method and in particular the

assumption of a minimal configuration reasonable,

relies upon the ability to perform many dynamic reconfigurations.

Unfortunately most systems have little, if any, ability to perform

dynamic reconfigurations. As a consequence this scheme could never even

be considered.

In summary, our

basic scheme is as follows. At system generation

time we create a core image by assuming that we will be running on the

minimal configuration and, at the same time, we perform all actions

common to all initializations. When it is desired to initialize the

system, the core image is loaded into memory to produce a running base

layer. Dynamic reconfigurations can then be invoked to cause the base

layer to be running on the configuration actually present.

Initialization of higher layers can then occur.

35




3.3 Wrapup

In this chapter we have outlined how initialization in a layered
system can proceed upward, layer by layer, through the structure
hierarchy. 1In such a system the hard part of initialization is the
initialization of the base layer. A core image approach to base layer
initialization has been presented based upon the concepts of common
actions, a minimal configuration and dynamic reconfiguration. The next
three chapters will discuss each of the parts of initializing the system

more deeply and explore the underlying concepts more closely.

36




Chapter Four

Core Image Generation

In the previous chapter we outlined our proposed initialization
scheme. One of the cornerstones of this scheme is the ability to
create, at system generation time, a core image of the base layer with
the property that once loaded into core it is essentially functional.
In this chapter we propose one way of generating this core image by

assuming the existence of a minimal configuration.

4.1 The Process of System Generation

In order to generate the base layer core image, we will use
techniques similar to those currently used by IBM"s 0S-360/370 and CDC’s
7600-SCOPE operating systems. In these systems, a version of the
operating system 1is produced that is tailored to the needs of a
particular configuration. This is done by feeding the system generation
procedures all the information that they need, such as how much memory
and how much disk space will be around, the addresses of available main
memory, device addresses, types and sizes of devices and the system
wiring diagram. The system generation procedures then produce a version
of the operating system made specially for the particular configuration

described. It should be clear that an identical procedure can be used

37




to produce a base layer core image for any system once we know the

configuration. In our case we know that

minimal configuration.

The output of the system generation
which might be a disk pack or a magnetic
generated core image, with possibly some
should be loaded at initialization time,

routines as well as any data they need.

the configuration is the

process 1is the bootload medium
tape. It consists of the

information describing where it
the file system initialization

In a more general case, at the

time higher levels in the system are initialized it is necessary to have

the routines and data that comprise them

available to their

initialization routines. They must, in general, be provided by the

system generation process. For convenience we also place them on the

bootload medium.

38




4.2 Where System Generation Occurs

The first question to answer is: Where do we generate the bootload
medium and hence the base layer core image? System generation should
take place in a standard user process, the same place that the system
programmer does most of his work. Generating the bootload medium in a
standard process has two very important advantages. The<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>